Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration

نویسندگان

  • Xiaofei Cheng
  • Guoying Zhang
  • Liang Zhang
  • Ying Hu
  • Kai Zhang
  • Xiaojiang Sun
  • Changqing Zhao
  • Hua Li
  • Yan Michael Li
  • Jie Zhao
چکیده

Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC-derived exosomes (MSC-exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC-exosomes and associated mechanisms for NPC apoptosis. MSC-exosomes were isolated from MSC medium, and its anti-apoptotic effect was assessed in a cell and rat model. The down-regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC-exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC-exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR-21 were down-regulated in apoptotic NPCs while MSC-exosomes were enriched in miR-21. The exosomal miR-21 could be transferred into NPCs and alleviated TNF-α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Intradiscal injection of MSC-exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC-derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR-21 contained in exosomes. Exosomal miR-21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy

Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...

متن کامل

Downregulation of microRNA-125a is involved in intervertebral disc degeneration by targeting pro-apoptotic Bcl-2 antagonist killer 1

Objective(s): To investigate the role of the microRNA-125a (miR-125a) and BAK1 in intervertebral disc degeneration (IDD). Materials and Methods: Degenerative lumbar nucleus pulposus (NP) tissues were obtained from 193 patients who underwent resection, and normal controls consisted of normal NP tissues from 32 patients with traumatic lumbar fracture in our hospital. All patients were graded acco...

متن کامل

Influence of simvastatin on the biological behavior of nucleus pulposus-derived mesenchymal stem cells

Objective(s): This research is to study the influences of different concentrations of simvastatin on the biological activities of nucleus pulposus-derived mesenchymal stem cells (NPMSC).Materials and Methods: NPMSC were cultured with different concentrations of simvastatin (0, 0.01, 0.1, and 1 μM) and assessed to determine the possible e...

متن کامل

TGF-βl Suppresses Inflammation in Cell Therapy for Intervertebral Disc Degeneration

Recent studies suggest that cell therapy may be an effective way to repair intervertebral disc degeneration. As a strong immune suppressor, TGF-β1 has been shown to inhibit inflammation respond effectively. The objective of this study was to explore the effects of TGF-β1 during bone marrow mesenchymal stem cells-based therapy for disc degeneration. In vitro assays demonstrated that co-culturing...

متن کامل

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2018